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A Continuum of Molecular Weight Distributions 
Applicable to Linear Homopolymers 

WALTER E. GLOOR, Hercules Incorporated, Wilmington, Delaware 19899 

Synopsis 
An array or continuum of molecular weight distributions was set up, based upon the 

numerical solutions found for the theoretical log-normal (LN) and generalized exponen- 
tial(Gex) distribution functions, for a range of M J M ,  = H ratios. For the Gex dis- 
tributions, m > 0 in the continuum, and the theoretical Schulz-Zimm and Tung- 
Weibull distributions, in which m >_ 1 for H 5 31, are located within the continuum. 
The LN distribution is the broadest, and the Gex-related distributions become narrower 
as the numerical value of m increases. From literature data for polystyrene, poly(viny1 
chloride), linear polyethylene, and polypropylene, one can assign to these polymers 
specific molecular weight distributions that fall within the continuum. 

Several known distribution functions can be assembled into an array or 
continuum of molecular weight distributions (MWD's) by comparing the 
numerical solutions of theoretical formulas for certain ratios based on 
average molecular weights. Literature data giving such molecular weight 
data for a number of homopolymers fit into the continuum. This defines 
the specific MWD pertaining to  each of the homopolymers. 

The first step in developing the continuum was to  find theoretical 
formulas for M,, M,, M,, and M,, values for which are usually given by 
reports characterizing polymers, and then to  set up, in consistent symbols, 
formulas for M,/M,, M,/M,, M,/M,, and M,/M,. For convenience, the 
first two of these ratios will hereafter be designated as H and H, ,  respec- 
tively, and M,/M,  = H X H, .  

In  the form of the generalized exponential (Gex) distribution function 
given by Peebles,' the three parameters k, m, and y are considered to  be 
related to  distribution breadth, location, and the specific polymer, respec- 
tively. When m = 1, the Gex distribution becomes that of Schulz-Zimm; 
when m = k + 1, it is equivalent t o  the Tung-Weibull distribution. 
These are all unimodal distributions. Formulas for M,, M,, and M ,  are 
given by Peebles' and Tung* in terms of the three parameters. These 
authors also give formulas for M ,  using the three parameters plus a, the 
exponent in the Mark-Houwink equation linking intrinsic viscosity of a 
polymer with its M u .  

When the ratios H and H ,  are set up in terms of the three parameters, 
the polymer-specific y cancels out, giving H and H, in terms of k and m; 
for M,/M,, only k ,  m, and a remain in the formulas, as shown in Table I. 

273 

@ 1975 by John Wiley & Sons, Inc. 



TA
BL
E 

I 
Fo

rm
ul

aa
 fo

r 
R

at
io

s 
H

, M
,/M

., 
an

d 
H,
 in

 T
er

m
s o

f 
k 

an
d 

m
 fo

r 
G

ex
-r

el
at

ed
 M

W
D

's
* 

M
W

D
 

Ge
n.
 ex

po
ne

nt
ia

l 
Sc

hu
lz

-Z
im

m
, m

 =
 1

 
T

un
g-

W
ei

bu
ll,

 m
 =

 k
 +

 1 

-.
 

.
-

 
ar

[-
] d

en
ot

es
 g

am
m

a 
fu

nc
tio

n 
of 

br
ac

ke
te

d 
ex

pr
es

si
on

. 
Fo

r 
th

es
e 

di
st

ri
bu

tio
ns

, H
, 
< 

H
. 



CONTINUUM OF MWDS 275 

TABLE I1 
Values of Gex Parameter k Calculated for Various Distributions and Combinations of 

Gex Parameter m and H 

Distribution H = 2  H = 3  H = 6  H = l l  H = 2 1  H = 3 1  

Gex, m = 0.2 6.3 3.7 1.95 1.25 0.85 0.67 
m = 0.5 2.15 1.14 0.49 0.27 0.14 0.095 
m = 1.0 1.0 0.50 0.20 0.10 0.05 0.033 

Tung-Weibull 0.67 0.38 0.175 0.094 0.049 0.033 
Gex, m = 10. 0.43 0.23 0.098 0.05 0.025 0.017 

TABLE I11 
Values of H , / H  and H ,  X H = MJM. Calculated from Log-Normal and Gex 

Distribution Formulaa Using k from Table I1 

H = 2  H = 3  H = 6  H = l l  H = 2 1  H = 3 1  

Log-normal 
Gex,m = 0.2 

m = 0.5 
m = 1.0 

Tung-Weibull 
Gex, m = 10. 

Log-normal 
Gex, m = 0.2 

m = 0.5 
m = 1.0 

Tung-Weibull 
Gex, m = 10. 

A.  H J H  
1.0 1.0 1.0 1.0 
0.91 0.83 0.61 0.45 
0.83 0.67 0.42 0.26 
0.74 0.56 0.305 0.173 
0.62 0.47 0.275 0.168 
0.58 0.42 0.22 0.12 

4 9 36 121 
3.6 7.3 22 55 
3.4 6.1 14.8 30 
3.0 5.0 11.2 21 
2.5 4.3 9.7 19.2 
2.45 3.8 7.8 14.5 

B. H .  X H or MJM, 

1.0 
0.30 
0.14 
0.092 
0.092 
0.063 

441 
132 
64 
41 
38.3 
27.5 

1.0 
0.23 
0.10 
0.064 
0.064 
0.043 

961 
218 
96 
61.6 
59.7 
40.5 

When these formulas are evaluated systematically using a series of numeri- 
cal values of m, H ,  or k as called for, Table I1 can be set up giving the 
theoretical value of k for each pair of assigned values of H and m. The 
formulas for H ,  and for M , / M ,  can then be evaluated using the theoretical 
value of k pertaining to  each pair of H and m values. 

For the log-normal MWD, H is usually known from experiment, H ,  = H ,  
and M,/M,  = H(14)’z  as shown by Chiang.s 

To set up the continuum for polymers whose M ,  is not known, the theo- 
retical values of H and H ,  in the log-normal and Gex distributions are 
calculated, the ratio H , / H  and the product H X H ,  are found, and these 
measures are tabulated against H over the range of MWD forms considered, 
as shown in Table 111. Since some polymer characterizations report 
M,:M, :M, ,  Figure 1 shows a log-log plot of the theoretical values for 
H X H ,  versus H in more complete form, illustrating the range of the 
continuum of MWD’s. 

Rudin4 published formulas relating known M,, M,, and M ,  of a polymer 
to its characterization in terms of skewness and asymmetry of its distribu- 
tion. Log-log plots of these two measures for a series of hypothetical 



276 GLOOR 

Log - Normal MU0 000 r 
800 

600 - 
400 - 

- 
Gex, m = 0.05 - Gex. m = 0.1 

Gex, m = 0.2 300 - 
200 - 
100 - Gex, m = 0.5 

80 - Gex. m = 1.0 
60 - Tung - Weibull 

I 

- 
40 - 
30 - 
20 - 

1 2 3  6 1 1  21 31 

H = M,/M, 

1 

E 
x 

r 
. 

N 

I1 

I 

X 

N 
I 

Fig. 1. Theoretical relations between M./M,  and H for various molecular weight dis- 
tributions (MWD’s). 

polymers of constant M ,  following the various distributions show a strong 
resemblance to Figure 1 with respect to position, linearity, and deviations 
of the lines for the Gex-related MWD’s from log normal as H increases. 

Theoretical values for M,/M, using several values of a also were calcu- 
lated; for each value of a, log-log plots of Mw/M1)  versus H gave straight 
lines for the log-normal MWD, while the Gex-related MWD’s again gave 
lines concave to the abscissa, departing more from log-normal as m in- 
creases, as shown in Figure 2. These relations are’ useful to establish a 
distribution when M ,  is unknown, or to check the accord between fractiona- 
tion and viscometric data in assigning an MWD to a polymer. Each 
group of lines calculated for a specific value of a in Figure 2 represents the 
continuum for that value a only. 

Using this approach, it is possible to assign a specific MWD to many 
whole homopolymers using literature values of their average molecular 
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TABLE IV 
Assignment of MWD to Polymers from Literature Data Given for Them 

~~ 

Assigned using M ./M ,, Assigned using M w / M v  

Sample m MWD m MWD 

IUPAC,. PSs 1.1 S-Zb 0.8 near S-Z 
IUPAC, PVCs 1.0 S-Z -0.2 near L N o  
NBS 1475, HDPE' 0.07 L N  0.05 L N  
HDPE NO. 27 0.03 G N  0.26 near L N  
PP sample C* 0.10 near L N  no data on M ,  shown 
IUPAC broad HDPE6 no M ,  reported 0.08 G N  
HDPE No. 60 no M .  reported 1.7 near T-Wd 
HDPE No. 99 no M .  reported 0.23 near L N  
PP sample E l m  no M, reported -7 Gex 
PP sample E210 no M, reported 0.6 Gex 

8 Study of MWD of commercial polymers by International Union of Pure and Applied 

PP sample E-4'0 no M. reported 0.05 L N  

Chemistry. 
b SChub-Zimm MWD. 
0 Log-normal MWD. 
d Tung-Weibull MWD. 

' I  

1 . 6 0  0 . 2 0 0  

. . . I  

a = 0 . 6 9  LN 

a = 0.73 LN 

a = 0 .77  LN 

a - 0 .77  m = 0 . 1  

a = 0.77 m = 0 . 2  

a = 0.77 m = 0.5 

I iii1) m - 1 . 0  

Tung - Y e i b u l l  a = 0.77 
a = 0.77 m = 3 
a = 0.77 m - 10 

H - 2  3 6 11 21 31 = Mw/Mn 

Fig. 2. Theoretical relations between M , / M ,  and H for various molecular 
distributions (MWD's). 

weight 

weights. Table IV gives a few such assignments using M,, M,, and M ,  
or H J H  as reported for polystyrene (PS),6 poly(viny1chloride) (PVC),6 
linear polyethylene (HDPE) ,6J*9 and polypropylene (PP) .8.10 The assign- 
ments using M ,  data gave the anticipated distributions: Schulz-Zimm 
for PS and PVC, and near log-normal for the polyolefins. Except for 
PVC, the assignments made using M ,  were similar; agreement was even 
poorer for the nonlinear, poly(viny1 acetate) reported in reference 5. As an 
example of an assignment, the PS sample had M,:M,:M, = 5.7:3.4:1; 
at  H = 3.4 of Figure 1, M J M ,  of 5.7 is just below the line m = 1, leading 
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to  the assignment of m = 1.1 to  this sample. Data upon other polymers 
for which only H and M ,  were given illustrate the range of distributions 
found in the data surveyed. 

Noteworthy are the HDPE samples 6 and 9 of Wesslau,B made using Ti 
ester and Ti halide catalysts, respectively, which conform to the Tung- 
Weibull and log-normal MWD’s attributed to  them by that author. The 
PP samples E-1, E-2, and E-4 made by Yamaguchilo in the presence of 
different amounts of hydrogen follow quite different MWD’s. Yamaguchi 
described their MWD’s by means of the f-factor correction to  the log- 
normal distribution of Davis, Tobias, and Peterli, reporting f-factors of 
1.28, 1.05, and 1.0, respectively, for them. The values of m shown for 
them in Table IV follow the same trend. The usual measure of polymer 
heterogeneity H reported for samples E-1 and E-2 was 7.4 and 6.7; it is 
of interest to  calculate polydispersity 9; from Hosemann and Schramek, n 
for them. Tung* gives this in a form equivalent to  g = (H, - l)”’, which 
takes MWD into account. The MWD assignments for the two samples in 
Table IV and their H values enable us to  estimate their H X H, values, 
from which H ,  values of 1.22 and 2.32 result, their polymolecularities g 
becoming 0.47 and 1.15, quite the reverse of the usual measures. 

The various forms of the continuum shown above enable one to  assign 
specific MWD’s to  several linear homopolymers that follow unimodal 
distribution functions. It indicates that the log-normal MWD is broader 
than Gex-related MWD’s where m > 0 and that, as m increases, these 
distributions narrow. It enables one to  assign a specific Gex MWD of 
parameter m to  such polymers, fills the gaps in the continuum between the 
log-normal, Schulz-Zimm, and Tung-Weibull distributions, and extends 
beyond them. It provides a definite picture of the interrelationships of 
the three distributions named. Application of the continuum to  real 
polymers suggests that it offers (1) a simple way of characterizing many 
polymers, (2) a simpler way of characterizing deviations from the log- 
normal MWD than do f-factors, (3) a way of following the effect of polym- 
erization conditions upon the heterogeneity of the product, and (4) a 
better way of comparing distribution breadth of polymers which do not 
follow the same MWD. 

We hope to  publish a more complete description of the material outlined 
in this note. 
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